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Abstract

This article reports on satellite observations of iodine monoxide (I0) and bromine
monoxide (BrO). The region of interest is Antarctica in the time between spring and
autumn. Both molecules, IO and BrO, are reactive halogen species and strongly in-
fluence tropospheric composition. As a result, a better understanding of their spatial
distribution and temporal evolution is necessary to assess accurately their role in tropo-
spheric chemistry. Especially in the case of 10, information on its present magnitude,
spatial distribution patterns and source regions is still sparse.

The present study is based on six years of SCIAMACHY (SCanning Imaging Ab-
sorption spectroMeter for Atmospheric CartograpHY) data recorded in nadir viewing
geometry. Multi-year averages of monthly mean IO columns are presented and com-
pared to the distributions of BrO. Influences of the 10 air mass factor and the 10 ab-
sorption cross section temperature dependence on the absolute vertical columns are
discussed. The long-term observations of 10 and BrO columns yield new insight into
the temporal and spatial variation of 10 above the Antarctic region. The occurrence of
IO on Antarctic sea ice in late spring (November) is discovered and presented. In addi-
tion, the comparison between 10 and BrO distributions show many differences, which
argues for different mechanisms and individual nature of the release of the two halogen
oxide precursors. The state of the ecosystem, in particular the changing condition of
the sea ice in late spring, is used to explain the observations of the IO behaviour over
Antarctica and the differences between 10 and BrO distributions.

1 Introduction

Reactive halogens such as iodine, bromine and their oxides have received growing
attention in the past years owing to their strong impact on tropospheric composition.
The attention for halogen oxides is intensified by the recently developed space based
remote sensing instrumentation, which is yielding their amounts. In particular, reactive
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halogens deplete ozone and alter the HO, and NO, ratios, consequently changing
the oxidizing capacity of the troposphere. The halogen oxides iodine monoxide (lO)
and bromine monoxide (BrO), generated from the reaction of atomic | and Br with
ozone, play a central role in these processes (Barrie et al., 1988; Solomon et al., 1994;
Carpenter et al., 2003; Platt and von Glasow, 2005; Simpson et al., 2007b).

A prominent example of tropospheric ozone loss by halogen chemistry are ozone de-
pletion events in Polar Spring, closely linked to enhanced bromine levels and now un-
derstood to be initiated by the bromine explosion mechanism (Barrie et al., 1988; Platt
and Honninger, 2003). Furthermore, interest is motivated by observations that BrO
acts as an oxidizing agent for gaseous mercury leading to enhanced bio-availability
of mercury (Schroder et al., 1998; Steffen et al., 2008), and by clear evidence that
I0 may nucleate via self-reactions to larger iodine oxide molecules (Burkholder et al.,
2004) forming atmospheric particles and eventually growing to cloud condensation nu-
clei (O’'Dowd et al., 2002; McFiggans et al., 2004; O’'Dowd and Hoffmann, 2005).

lodine atoms may be released by photolysis of precursor substances such as |, or
volatile iodocarbons emitted from the marine biosphere. Inorganic release processes
are also being considered, but they are so far uncertain. Bromine precursors include
organic as well as inorganic sources. The onset of the rapid bromine explosion was
identified to be an inorganic mechanism. Through cross reactions between 10 and
BrO, the chemistry of the two halogens is linked. In this respect, the ozone destruc-
tion potential of IO and BrO together is larger than the sum of the individual impacts
(Vogt et al., 1999). Modeling calculations have also shown that 10 has a substantial
impact on tropospheric composition even at small amounts (Vogt et al., 1999), and that
neglecting tropospheric iodine and bromine chemistry in previous model studies may
explain discrepancies between measured and predicted amounts of species like Og,
OH and HO, (Bloss et al., 2005; Read et al., 2008).

The occurrence of IO and BrO indicates ongoing active halogen chemistry. Knowl-
edge of the abundances, distributions and variations of 10 and BrO, spatially as well
as temporally, is therefore necessary. Tropospheric BrO was first measured by Haus-
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mann et al. (1994) using ground-based long-path DOAS (Differential Optical Absorp-
tion Spectroscopy) measurements, and by Wittrock et al. (1996) and Miller et al. (1997)
using scattered sunlight DOAS observations. After BrO was observed in the Antarc-
tic lower stratosphere by ground-based spectroscopy (Solomon et al., 1989; Carroll
et al., 1989) and insitu aircraft measurements (Brune et al., 1989), Kreher et al. (1997)
provided evidence of boundary layer BrO in the Antarctic also using passive DOAS
measurements. Satellite observations in 1998 first showed the widespread nature of
BrO occurrence in Polar Spring (Richter et al., 1998; Wagner and Platt, 1998).

IO was first detected in the atmosphere in 1999 by Alicke et al. by ground-based,
active DOAS in the mid-latitudes, and its occurrence was linked to a combination of
close-by algae beds, low tide, and strong solar illumination (Carpenter et al., 1999).
Since then, further measurement campaigns have observed IO by active and passive
DOAS in the marine boundary layer (MBL) at several locations of the world, e.g. at mid-
latitude coasts and (sub)-tropical marine sites (Allan et al., 2000; Peters et al., 2005;
Saiz-Lopez et al., 2006; Oetjen, 2009) and in Polar Regions (Wittrock et al., 2000;
FrieB et al., 2001; Saiz-Lopez et al., 2007a) with typical concentrations up to a few
ppt. 1O amounts in the Arctic were found to be much lower than in the Antarctic, and
often below detection limit (Honninger et al., 2004; Mahajan et al., 2010). Two in-situ
methods, cavity ring-down spectroscopy as well as the technique of laser induced flu-
orescence, were successfully used to determine 10 concentrations in the mid-latitude
MBL (Wada et al., 2007; Whalley et al., 2007). Measurements from balloons so far
show that IO amounts in the stratosphere are below detection limit of 0.1 ppt (Pundt
et al., 1998; Bdsch et al., 2003; Butz et al., 2009), however, no such investigations
have been performed in Antarctica yet.

Through laboratory studies, better understanding of the reaction pathways of 10 and
its products has been achieved (Himmelmann et al., 1996; Bloss et al., 2001; Gomez
Martin et al., 2007, 2009), and incubation studies have demonstrated the release of
iodocarbons from algae and phytoplankton (Pedersén et al., 1996). Interestingly, polar
algae seem to emit larger amounts of iodine compounds than their subtropical relatives
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(Giese et al., 1999), similar to cold water diatoms in comparison to temperate species
(Tokarczyk and Moore, 1994; Moore et al., 1996).

Focussing on iodine species in Antarctica, 10 has been observed at a few loca-
tions by ground-based instruments (Friel3 et al., 2001, 2010; Saiz-Lopez et al., 2007a).
Large amounts around 10 ppt with singular events up to 20 ppt have been detected
occasionally in the boundary layer. However, the abundances are highly variable. Con-
cerning the altitude profile of 10, knowledge is rather limited. Significant abundances
in large altitudes have not yet been detected. The suggestion that 10 is situated in
the boundary layer, possibly only in the lowest few tens of metres, is supported by
modeling studies (Saiz-Lopez et al., 2008a) as well as by recent multi-axis DOAS
measurements at Halley, Antarctica (Howard Roscoe, personal communication). In-
dications were reported that a significant fraction of IO might possibly even be located
within the snow (FrieB3 et al., 2010). Satellite observations reveal substantial amounts
of 10 above the Antarctic region. Global maps of 10, observed by the satellite sen-
sor SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric Car-
tograpHY), have been published previously (Schonhardt et al., 2008) with a focus on
seasonal averages. A study of four selected days of satellite observations above the
Antarctic was published by Saiz-Lopez et al. (2007b).

In the present study, more details on the spatial and temporal variation of 10 distri-
butions are presented, based on six entire years of SCIAMACHY observations. The
satellite sensor SCIAMACHY will be introduced, and the measurement method and
applied retrieval parameters for the IO and BrO retrievals are summarized. A focus of
the present study is the time series of Antarctic IO maps, for which first the averaging
technique is explained and then the spatial and temporal variation of 10 is described.
Simultaneous |0 and BrO observations are compared, and due to the importance of
the sea ice cover in this area, observations of the sea ice concentrations are used to
analyse specific 10 occurrences.
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2 Instrument

SCIAMACHY is a UV-vis-NIR spectrometer measuring in nadir, limb and occultation
modes from onboard the European Environmental Satellite (ENVISAT). ENVISAT is
moving in a sun-synchronous, near-polar orbit since March 2002 with a local equa-
tor crossing time of 10:00a.m. The wavelength region covered by SCIAMACHY is di-
vided into eight channels within the ranges of 214-1773 nm, 1934—2044 nm and 2259—
2386 nm. The instrument records direct, scattered and reflected sun light. Measure-
ments used in the present study are nadir observations from channel 3, clusters 14
and 15 (404-527 nm) with a spectral resolution of 0.44 nm, as well as from channel 2,
clusters 9 and 10 (310-391 nm) with a spectral resolution of 0.26 nm. Further details
on the instrument, measurement modes and mission objectives can be found in Bur-
rows et al. (1995); Bovensmann et al. (1999); Gottwald et al. (2006) and Gottwald and
Bovensmann (2011).

3 10 and BrO retrieval algorithms

The column amounts of 10 and BrO are quantified by using the well-established DOAS
algorithm (Platt and Perner, 1980; Platt and Stutz, 2008). Table 1 lists the relevant
retrieval settings. 10 is retrieved in the wavelength interval of 416—430nm, and the
fitting window for BrO lies at 336-347 nm. In both cases a high-pass filter polynomial
was applied to the measured optical density In(/,//) in order to eliminate broad-band
spectral structures. Here, / is the analysed nadir spectrum and / is a reference back-
ground spectrum, ideally free of absorber influences. For the case of BrO, a daily solar
spectrum was chosen as /,. An improved retrieval quality was achieved by the choice
of an averaged daily earthshine spectrum in the case of IO (Schonhardt et al., 2008).
The 10 retrieval had originally been tested in spectral regions also including wave-
lengths above 430 nm. By using e.g. the spectral window of 418-438 nm, similar re-
sults, especially in pattern, were obtained as compared to results then reported by
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Saiz-Lopez et al. (2007b). However, using the larger spectral windows, also noticeably
large fitting errors in the areas of supposed 10 observation had occurred. There is
an interference, which we attribute to residual error associated with the atmospheric
radiative transfer in strong Fraunhofer lines. This makes the larger spectral windows at
present unsuitable for 10 retrieval from space. Consequently, the retrieval had been
moved to a different fitting window to avoid the Fraunhofer band around 430.5nm
(Schonhardt et al., 2008).

Another question relevant to the 10 retrieval is the dependence of its absorption
spectrum on temperature (cf. BrO, Fleischmann et al., 2004). Although previous lab-
oratory work has found a significant dependence on temperature of the 10 peak ab-
sorption cross section of the (4-0) band (Bloss et al., 2001), full range spectra at low
temperatures have not been reported to date. Moreover, no attempt has been made
to quantify the systematic error resulting from using the 298 K reference spectrum for
ground- or satellite-based observations in Polar Regions. In order to elucidate this
question, laboratory experiments have been carried out where low resolution 10 spec-
tra have been recorded in the temperature range between 233 and 298K (see Sup-
plement). These experiments show that as a result of depopulation of high rotational
levels of the ground vibrational state with decreasing temperature, the 10 bands be-
come narrower and grow higher, resulting in a difference of 35 % between the (4-0)
band peak-to-valley cross sections at 233 and 298 K. The overall effect when using
the 298 K reference spectrum for atmospheric retrievals at 243 K is an overestimation
of around 20 % of 10 concentrations or column densities. Due to the simultaneous
narrowing and growing of the absorption bands at colder temperatures, the magnitude
of the temperature effect depends on the spectral resolution of the recording spec-
trometer. At a finer spectral resolution (such as for SCIAMACHY) a slightly stronger
influence is expected, while a broader resolution will attenuate the temperature ef-
fect. More information as well as the temperature dependent reference spectra of
IO are being made available at http://www.iup.physik.uni-bremen.de/gruppen/molspec/
databases/referencespectra/iospectra/index.html.
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From the DOAS retrieval, the slant columns of the trace gases are determined. The
slant column is the average of the trace gas density integrated over the specific light
paths of the recorded light. In order to transform this amount into a vertical column,
i.e. the trace gas concentration integrated vertically through the altitude layers, the air
mass factor (AMF) needs to be applied. The AMF describes the relative light path
length through an absorber layer and is represented by the ratio of slant column to
vertical column.

The averaged 10 vertical column above Antarctica for the years 2004 to
2009 is shown as first overview in Fig. 1. Average columns reach up to
1.9x10'> molecem™2. For individual measurements, also larger IO amounts are de-
tected. Over widespread areas the vertical column lies between 1.0x10'? molecem ™2
and 1.5x10"moleccm™. The detection limit for single recordings lies around
7x10"? moleccm™ for the slant column, corresponding to a vertical column around
1.7x10"® molec cm 2 over snow and ice, depending on the AMF. This detection limit is
reduced by temporal averaging, as performed in this study.

The AMFs used here were calculated by the radiative transfer code SCIATRAN
(Rozanov et al.,, 2002; Rozanov et al., 2005a). A surface spectral reflectance of
a=0.90 and a pure Rayleigh atmosphere were assumed. Aerosols influence the sen-
sitivity of the measurement and hence the AMF, however, treatment of aerosols has
been neglected in the present case as Antarctic aerosol concentrations are fairly low.
Aerosol observations from space over snow and ice are more challenging than over the
ocean or land, so a complete set of aerosol information for the time and space covered
by the 10 analysis is not readily available yet.

For the case of bright reflecting surfaces, the influence of aerosols on the AMF re-
mains small in comparison to dark scenes. Generally, SCIAMACHY offers better sen-
sitivity of 10 observations over snow and ice. In the current treatment of Antarctic 10,
amounts over the open ocean are underestimated as the surface effect cannot be fully
taken into account. A more elaborate consideration of the AMF may be performed as
soon as more information on the atmospheric conditions of the considered scenarios
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is available.

For the AMF calculation, the assumed trace gas profile is an important input infor-
mation. Current understanding is that most of the IO is situated in the lower boundary
layer (Saiz-Lopez et al., 2008a; Mahajan et al., 2010). No measurements of signif-
icantly large stratospheric iodine amounts above Antarctica have been reported yet.
For this study, consequently, a tropospheric 10 content at low altitudes is assumed.

The AMF values for IO used in this work, were computed for a wavelength of 425 nm
and varying solar zenith angle (SZA). The result is plotted in Fig. 2. For the final
calculation of vertical columns, an 10 box profile in the lowest 1 km of the troposphere
was assumed. Clearly, in the near polar regions, boundary layer heights may reduce
to much lower altitudes. However, the difference for the AMF when assuming a 1 km or
a 100 m box profile for 10 is fairly small. This can be seen in Fig. 2, where the AMFs for
these two profiles in dependence of the SZA are shown, for a 1 km box profile in blue
and for a 100 m profile in red for comparison. The AMF varies between about 3.1 and
4.6 with changing SZA, and the difference between the two profile cases remains below
7 % above bright surfaces such as snow and ice. The assumed trace gas profile has
much larger impact a) above dark surfaces and b) on deduced values of the volume
mixing ratio.

For BrO, the situation is different. Considerable amounts of BrO are situated in the
stratosphere (Rozanov et al., 2005b). In order to take into account the notable amounts
of stratospheric BrO with vertical columns of around 5x10" molec cm‘z, a strato-
spheric AMF is applied to the BrO slant columns (Richter et al., 1998). Depending on
the actual vertical distribution, the tropospheric BrO part tends to be underestimated by
this procedure, for smaller SZA some overestimation is possible (up to around 50 %).
The observed spatial patterns of tropospheric BrO in Antarctica, however, do not de-
pend crucially on the treatment of the AMF. Again, the impact of the profile treatment
would be larger over dark scenes. For elaborated studies on BrO air mass factors,
please refer to Begoin et al. (2010) and Theys et al. (2011).
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4 Data set and averaging procedure

In total, six years of SCIAMACHY nadir data are used in this study. The period covers
the years from 2004 to 2009. Due to the comparably small amounts of IO close to the
detection limit of the instrument (Schonhardt et al., 2008), it is necessary to average 10
results over several weeks to months to create maps with sufficient data quality. After
suitable averaging steps, details on the spatial distribution and temporal variation of 10
become visible.

Seasonal patterns of 10 repeat in similar form from year to year. Therefore, selected
short time periods may be averaged over several subsequent years to improve the
signal-to-noise-ratio, and still retain some information on the shorter time scale. As
an example, the reoccurrence of IO spatial patterns from year to year is shown in
Fig. 3 for the 3-month spring period September to November for all six years 2004 to
2009 individually. In all six years, 10 amounts are elevated above the shelf ice regions,
around the continent on the sea ice, along coast lines and above parts of the continent.
The absolute IO amounts differ from year to year with higher amounts, e.g., in 2006
and lower levels, e.g., in 2009, however, the observed spatial pattern is noticeably
similar. The level shift in 10 vertical columns between spring 2006 and spring 2009
corresponds to a difference in 10 optical depth of below 5x107° (already taking into
account the average AMF of 4). The pattern of enhanced 10 is more meaningful than
the absolute amounts.

In the following, monthly means of 10 are presented which are averaged over the
time span of six years. Averaging periods either start at the beginning or the middle of
a month. In this manner, a time series is generated as a running average, where each
map is shifted by half a month with respect to the previous image with half a month
overlap to both sides. Trace gas variations on effectively shorter time scales may be
analysed in this way. The same procedure is applied to the BrO data for suitable
comparison. For both retrievals, the values used for the final results are subject to
a quality criterion. Only those results satisfying a limit on the fit residual are considered,
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excluding individual measurements, e.g., with less than usual SNR.

5 Temporal and spatial variation of 10

The maps in Fig. 4 present a time series of 10 vertical columns over Antarctica. The
averaging procedure described in Sect. 4 is applied. The first map, e.g., contains data
covering the time from 15 September to 14 October from the years 2004 to 2009. The
following map then runs from beginning to end of October. For the same periods as for
10, the distributions of BrO above the Southern Hemisphere are computed and shown
in Fig. 5. The BrO maps are discussed and compared to 10 distributions later in the
following section.

Regions affected by enhanced 10 include the sea ice area, shore lines, the ice
shelves, and also parts of the continent. Interestingly, above each of these regions
enhanced 10 appears in different times of the year. In Antarctic early spring time, in
the beginning of the time series, 10 is enhanced around the shelf ice areas and above
parts of the continent. This can be seen in the first map (September/October). Towards
later spring, it can be seen how a distinct structure forms. A circular area of enhanced
IO amounts around the Antarctic continent begins to evolve in October/November, is
fully developed in November and can still be perceived during December. In the circu-
lar area, enhanced 10 columns lie around 1x10'2 moleccm ™ to 1.6x10'? moleccm ™.
The area lies within a part of the ocean still covered by sea ice during this time of
year. The sea ice on the ocean is present already during winter and through Antarctic
spring time, and slowly starts to break up and melt during spring. The relation between
IO appearance and sea ice coverage is discussed below in Sect. 7, where sea ice
concentrations are consulted for comparison.

The area exhibiting enhanced 10 then decreases during summer (December and
January), enhanced amounts are here mainly found at some coastal locations. In Jan-
uary, the 10 is found mostly above some shelf ice areas where it remains present also
in early autumn. Towards autumn then the 10 becomes more variable, the scattering in
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the data is enhanced due to less data points and less sun light (larger SZA) and con-
sequently reduced data quality. The enhanced IO amounts are then more widespread
in March. In winter, there are no data from scattered sun light measurements.

Following from the discussion on the temperature dependence of the 10 absorption,
the slight overestimation of 10 columns changes with season, with a stronger influence
towards the colder months. From typical temperature differences between Antarctic
winter and summer of around AT =~ 20-30K depending on location (Comiso, 2000),
a relative difference in retrieved 10 amounts of < 10 % results (see also Supplement).
A deviation of this magnitude will not significantly influence the observed patterns and
temporal-spatial variations of the 10 columns, but it should be kept in mind.

By averaging the 10 columns over the main latitude band of 10 enhancements
(~80°S to 60°S), the 10 column amounts may be investigated in dependence of the
longitude. In this way, the influence of the Solar Zenith Angle (e.g., by photochem-
istry or measurement sensitivity) is effectively removed. Longitudinal variations of |10
enhancements are then caused only by the regional characteristics of the area. The
variation of IO amounts with longitude and with time is depicted in Fig. 6. Months
from May to July have too little data at the given latitudes, these times appear as white
stripes. In the time from August to April each year, the Weddell Sea area and the Ross
Sea are regions with frequently large 10 columns. Other regions, e.g. between 80°E
and 140° E show generally low |0 amounts. Regions with less continent but more sea
ice area (0° E to —200° E) show the tendency for larger 10 columns. In each year, the
shelf ice areas (the Ross Ice Shelf, the Filchner and Ronne Ice Shelves, as well as
the smaller Amery Ice Shelf) exhibit enhanced IO columns. In regions with enhanced
IO, the absolute 10 values vary with time. It becomes visible again that the overall 10
spatial and temporal patterns repeat from year to year. Paying attention to the details,
however, some variability in this reoccurrence is recognized. Giving some examples,
the absolute 10 amounts vary somewhat from year to year, the secondary maximum
in autumn (around March) is unequally strong each year, and enhanced 10 amounts
at certain locations, e.g., at the Amery Ice Shelf at 70° E, do not appear at exactly the
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same time each year. The observed detailed differences are subject to variable local
environmental conditions.

6 Comparison of 10 and BrO distributions

With respect to reactive halogens and sea ice coverage on the ocean, the circular pat-
tern of enhanced 10 in late spring is familiar from observations of BrO. The appearance
of widespread BrO in Polar Spring above sea ice covered regions is well known and
has been discussed in preceding publications (Richter et al., 1998; Wagner and Platt,
1998; Wagner et al., 2001; Kaleschke et al., 2004; Simpson et al., 2007a).

The distributions of 10, described above, are now compared to those of BrO, shown
in Fig. 5 for the same time periods and averaging strategy as for 10. The stratospheric
portion of BrO is effectively masked by the choice of the colour scale, emphasizing the
tropospheric contribution. It is known that BrO appears above Antarctic sea ice (Wag-
ner and Platt, 1998; Richter et al., 2002; Kaleschke et al., 2004), while the necessary
conditions are still under discussion and not fully understood. The collected summary
of single BrO appearances in individual areas above the sea ice leads to the char-
acteristic circular pattern around the continent if, e.g., monthly means are considered
(Simpson et al., 2007b). Enhanced amounts of BrO are observed from early spring
onwards (i.e. August, not shown here), the circular pattern of BrO above the sea ice
remains fully developed in September/October and persists for several months through
the entire spring period, as visible in Fig. 5. BrO columns slowly decrease and re-
treat during summer. In December, the amounts above the ice shelves are larger than
above the sea ice. In addition, the Antarctic coast lines exhibit pronounced BrO, a fea-
ture which remains present throughout summer and autumn and decreases gradually.

Comparing the BrO with the IO distributions described above, there is one general
similarity: 10 and BrO are both observed in the Antarctic region with highest average
amounts in Polar spring time. Some of the affected areas overlap in location and partly
in time. Both reactive halogens generally appear on ice shelves, above the sea ice and

33663

Jadedq uoissnosiq | Jadeq uoissnosigq |  Jadeq uoissnosiqg | Jaded uoissnosig

ACPD
11, 33651-33688, 2011

Simultaneous
satellite observations
of 10 and BrO

A. Schonhardt et al.

: “““ “““


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/33651/2011/acpd-11-33651-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/33651/2011/acpd-11-33651-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

along coast lines.

Apart from that, mainly differences between the two species and their distributions
are identified. One prominent difference is the behaviour above the sea ice area. 10 is
observed above Antarctic sea ice only for a fairly short period in late spring, while BrO
exhibits its pronounced maximum there during the entire spring period, starting directly
after Polar Sunrise and then decreasing from October onwards.

The 10 and BrO distributions differ in two further aspects partly already mentioned
in Schonhardt et al. (2008). Enhanced 10 amounts are more widespread above the
continent than BrO. Best visible in December in Fig. 5, BrO is present above some
parts of the continent extending, e.g., inland from the Ross ice shelf (around 180° E)
and the Ronne ice shelf (around 50° E). 1O is present in large amounts above parts
of the continent in October, mainly inland from the Ronne and Ross ice shelves, and
nearly up to the South Pole. While IO amounts increase again towards autumn, e.g.,
enhanced |O is clearly visible in the Weddell Sea area in March, BrO amounts gradually
decrease over summer and do not reappear in autumn.

7 Discussion of the observations

Identification of source regions and release pathways is of major importance in the
research of reactive halogens. Satellite observations contribute to the clarification pro-
cess as they offer good overview of trace gas abundances in widespread, even remote
regions for long time periods. Species with similar source and sink characteristics
would show similar distribution patterns. The fact that IO and BrO both appear in
Antarctic Spring above partly overlapping areas (sea ice, coastal regions) may imply
some relation or chemical interaction between the two compounds. Long-path DOAS
observations above Halley in 2005 had shown in parts a similar temporal behaviour
of the local IO and BrO amounts (Saiz-Lopez et al., 2007a), from which a close link
between the two compounds at this location might be concluded. However, such sim-
ilarities are not observed for the temporal and spatial distributions of IO and BrO on
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larger scales. The apparent differences in the distributions argue for individual release
mechanisms for gaseous iodine and bromine species in Antarctica. An explanation of
sudden BrO release above sea ice by the inorganic bromine explosion mechanism has
been established in the past few years (Simpson et al., 2007b; Sander et al., 20086,
and references therein). The satellite observations show the different signature of 10
and suggest that its release mechanism is of different nature. After a short view on the
other regions, the following discussion mainly addresses the sea ice area.

7.1 Halogen oxides on ice shelves and the continent

Both species are observed on the shelf ice areas, and as for neither of the two halogens
direct sources on the ice shelf are known, the involvement of transport processes in
both cases is likely. For BrO, individual transport processes extending over distances
up to several thousand kilometres and lasting for several days are regularly observed,
e.g., also in the Arctic (Begoin et al.,, 2010). Chemical recycling processes enable
this persistence although the BrO photolytic life time is much shorter. Enhanced 10
extends over the continent even further. This has not been satisfactorily explained yet.
Some recycling of 10 on the surface and/or aeorosol appears to be likely. No ground-
based measurements are available to clarify the situation. However, transport and
recycling of iodine species involving aerosols and snow may effectively transfer iodine
from marine sources inland, similar to the BrO transport processes. The formation of
hygroscopic iodine containing acid anhydrides, as a result of 10 reactions, which act
as condensation nuclei for new particle formation is likely to be an important part of
this mechanism. In addition, some stratospheric 10 occurrence and the influence of
strong UV radiation during the ozone hole season might contribute to the observed
total 10 column. The determination of the details of the mechanism by which iodine is
transported into Antarctica producing IO still requires further investigation.
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7.2 Chlorophyll-a concentrations around Antarctica

It has been argued before, that iodine species are probably of biological origin (Alicke
et al., 1999). Biogenic iodine release by certain types of macroalgae/phytoplankton
has been observed and cold water diatoms produce organic iodine species. Carpenter
et al. (2007) have measured organic iodine species in the water columns as well as
above the water in the gas phase, and have found substantial amounts of, e.g. CH,l5,
in their case for Antarctic summer. Thus, evidence is provided by point measurements,
that iodine species are connected to the surrounding biological activity.

The high biological productivity of Antarctic waters is seen in Fig. 7, showing the
chlorophyll-a concentration measured by NASA’s SeaWIFS (Sea-viewing Wide Field-
of-view Sensor) and MODIS (Moderate Resolution Imaging Spectroradiometer) instru-
ments which is an average composite for the years 2004 to 2009. High chlorophyll-a
concentration indicates strong biological activity. Chlorophyll-a concentrations are par-
ticularly high close to the Antarctic continent, especially in the waters close to the shelf
ice areas, i.e. in the Weddell Sea, the Ross sea and seawards of the Amery ice shelf.
In these areas, Chlorophyll-a is positively linked to 10 occurrence (cp. Fig. 1). Glob-
ally however, high chlorophyll-a concentrations do not necessarily simply correlate with
high 10, so chlorophyll-a may be seen as an indication for IO appearance but not as
a proxy.

7.3 Seaice cover

Compared to the BrO appearance above the Antarctic sea ice, IO abundance evolves
comparably late and is temporally restricted mainly to November and December (cp.
Figs. 4 and 5). This is one of the most interesting differences between the two com-
pounds. After BrO is generated at Polar Sunrise, it takes nearly three more months
until 10 is observed in this area in a similar circular pattern. The appearance of IO
above the sea ice is only of short duration of around two months.
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With the largest extension of the sea ice cover being present in September (Thomas
et al., 2003), the sea ice begins to melt and retreat in the weeks after. During the
melting period, not only the total sea ice cover decreases, but more and larger open
leads develop, and in addition the still existing sea ice becomes more porous and
permeable. Ice algae in Antarctica live and feed from underneath the sea ice (Thomas
et al., 2003), and contact with the troposphere above is facilitated in later spring when
the ice cover weakens but still offers its habitat to the algae and phytoplankton. In
addition to the potential release of iodine from closed sea ice surfaces, for which ideas
were developed by Saiz-Lopez and Boxe (2008), the melting and breaking open of sea
ice and its increase in temperature and porousness may play an important role.

In order to relate the 10 appearance to sea ice cover, observations of sea ice con-
centrations are used. The sea ice is monitored by the AMSR-E instrument (Advanced
Microwave Scanning Radiometer for EOS), a passive microwave radiometer onboard
the AQUA satellite which belongs to NASA’s Earth Observing System (EOS). Sea
ice concentration data used for the maps in Fig. 8 are available from the Integrated
Climate Data Center (ICDC, http://icdc.zmaw.de/seaiceconcentration_asi_amsre.html|?
&L=1, KlimaCampus, University of Hamburg). Based on the brightness temperatures
measured with the AMSR-E 89 GHz channel, the ice concentration data are a result
of the ARTIST Sea Ice (ASI) algorithm (Kaleschke et al., 2001; Spreen et al., 2008).
The left map in Fig. 8 shows the average sea ice cover for October, the right map for
November, both averaged over the six year period from 2004 to 2009. Regions with
100 % ice cover are shown in white, and for lesser coverage the brightness decreases
through gray to black (around 50 % ice) and then to blue for 0% ice concentration
(i.e. open water). Regions without data are marked in pale turquoise. The sea ice
extends circularly around the Antarctic continent, and the ice covered area is smaller
for November than for October. In addition, the average concentration of sea ice has
already reduced between the two months, which can be seen in the larger dark grey
areas within the sea ice zone in the November map. Especially around the coast lines,
and at some specific areas within the ice cover, the concentration decreases.
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As an example, a closer view on the section between 0° and 10° E shall be taken
(box area in Fig. 8). Here, going from October to November, a rise in 1O concentra-
tions and a decline in ice concentration is observed (cp. Fig. 4 for 10). Figure 9 shows
zonally averaged amounts over the stated section of the ice concentrations in October
(blue dotted curve) and November (dark blue dashed curve), as well as the difference
between the two time periods in solid light blue. From the latter curve, two regions of
ice loss are identified, i.e. one between latitudes —67° and —61° still amid the sea ice
circle, and one between latitudes —60° and -53° at the ice edge. The first dip repre-
sents melting and breaking up of the sea ice in still sea ice covered regions, while the
second dip represents the retreat of the sea ice cover at the border to the open ocean.
The red curve shows the difference in 10 vertical column amount between November
and October in the same section. The largest enhancement of 10 is found between
latitudes —67° and —58°, covering the area of sea ice decline amid the sea ice and
reaching further northwards.

Assuming that the origin of iodine emissions is from ice algae and phytoplankton,
the observed specific IO enhancement is dependent on several factors. In regions
with a porous ice cover and many open leads, the contact of the algae species in the
water with the air above is facilitated, while the surrounding sea ice still preserves their
habitat. As a result, emissions in later spring would be more likely than in early spring
emerging from underneath a tightly closed ice cover. Above the comparably warm open
ocean areas within the sea ice circle, enhanced convection may enable the insertion
of gaseous species to the atmosphere.

The emission of iodine containing compounds into the atmosphere in later spring
may also be facilitated by the structure and composition of the ice itself. The probability
for liquids to pass through sea ice strongly depends on the temperature of the ice, with
a strong increase of permeability at a temperature of —5°C (Golden et al., 1998). At
temperatures above the threshold, water and brine can move through the sea ice. This
may have a direct impact on the living species below the sea ice (nutrient transport) as
well as on the upward transport of compounds and their insertion into the atmosphere.
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Closer investigation of the sea ice temperature and its relation to iodine release should
be performed by dedicated field work in Antarctica.

For the enhanced IO in earlier spring above regions apart from the sea ice, open
ocean directly at the coast may play a role. There is no marked 10 enhancement at
the ice edge, where the absolute sea ice loss is even larger. This may have at least
three explanations: firstly the lower sensitivity of the IO observations above the open
ocean as compared to ice and snow, secondly the loss of the algae and phytoplankton
preferred habitats when the sea ice vanishes, and thirdly the differences in meteorology
such as weaker convection.

Finally, a comparison of the satellite maps of 10 and ice concentration and the spe-
cific view on the selected section at 0°~10° E support the observation that IO amounts
are amplified above sea ice where the ice cover is breaking open and melting, but
where the sea ice habitat is still present.

8 Summary and conclusions

Six full years of SCIAMACHY nadir data have been analysed for the trace gas signa-
tures of 10 above Antarctica. Monthly periods of vertical column amounts have been
computed and averaged over the six years under consideration. The observed IO ver-
tical column is influenced by the considered AMF through the surface reflectance, the
aerosol loading and the unknown 10 altitude profile. While the AMF variation remains
around several percent for scenes with highly reflecting surfaces and low aerosol load-
ings, stronger variation results over darker surfaces.

The temperature dependence of the IO absorption cross section has been exam-
ined to estimate the influence of atmospheric temperatures on observed IO columns.
Through application of the 298 K cross section, an up to 20 % overestimation may result
for atmospheric temperatures as low as 243 K due to deeper and narrower 10O excita-
tion lines at colder temperatures. Combined uncertainties due to the IO AMF and fitting
inaccuracies are usually larger than the temperature effect.
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Strong variations of 10 abundances in time and space have been identified above
Antarctica. In the detailed temporal resolution, a distinct feature of 10 appearance has
been discovered. In late spring time, around November and December, a cloud of
pronounced 1O above the Antarctic sea ice region is regularly observed.

Comparisons of 10 and BrO distributions show, that the monthly evolution of these
species is different. Although the distributions partly overlap in time and space, consid-
erable differences in the spatial and temporal patterns are observed. Enhanced BrO is
a common feature on Antarctic sea ice during the entire spring period starting from po-
lar sunrise in August and lasting many months, while 10 above sea ice appears much
later in the year and for a shorter time. The observations support the view, that the
release pathways of iodine and bromine precursors are probably distinct in origin.

The presented observations and arguments also support the suggestion, that 10 re-
lease in Antarctica is of biogenic nature. Observations from the SeaWIFS sensor show
that areas of high chlorophyll-a concentrations and enhanced IO are in close proximity.
Observations of sea ice concentrations from the AMSR-E instrument have been con-
sidered, and they illustrate that the sea ice concentration decreases in late spring and
more open water areas develop still within the sea ice region, enabling closer contact
between species in the water column and the troposphere above. Convection above
the warmer water as compared to the surrounding ice and air above may facilitate the
input of biogenic iodine species to the troposphere.

For a complete understanding of the ongoing biogeochemical cycling of iodine
species in the Antarctic sea ice area, detailed in situ studies need to be performed
and coupled with improved spatial and temporal resolution remote sensing measure-
ments in the future. In these studies measurements in the water column are to be
directly combined with flux measurements and trace gas observations in the atmo-
sphere above. The satellite observations of 10 over several years, presented in this
manuscript, provide valuable insight into the distribution of 10 and its spatial and tem-
poral variation.
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Supplementary material related to this article is available online at:
http://www.atmos-chem-phys-discuss.net/11/33651/2011/
acpd-11-33651-2011-supplement.pdf
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Table 1. Settings for the DOAS retrieval of IO and BrO in this study. For the trace gases taken
into account, the temperatures of the respective cross sections are given in brackets.

Retrieval settings 10 BrO
Fitting window 416 to 430 nm 336 to 347 nm
Polynomial degree 2 (quadratic) 3 (cubic)
Trace gases NO, (223 K) (Bogumil et al., 2003) NO, (223 K) (Bogumil et al., 2003)
0O; (223 K) (Bogumil et al., 2003) O3 (223K, 273 K) (Bogumil et al., 2003)

Other features

10 (298 K) (Gomez Martin et al., 2007) BrO (228 K) (Fleischmann et al., 2004)

Ring effect: SCIATRAN calculation (Rozanov et al., 2002; Vountas et al., 1998)
Linear intensity offset correction
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Fig. 2. Calculated AMF for 10 using the SCIATRAN radiative transfer code for a Rayleigh
atmosphere at 425 nm above a 90 % reflecting surface. Two different layer heights (LH) are
compared, with constant VMR in this layer above the surface, LH = 1 km in blue and LH=100m
in red. The inset shows the ratio of the two AMF calculations, i.e. AMF (LH 1km) / AMF
(LH 100 m). The maximum difference between the two cases lies below 7 %.
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Fig. 3. Spring time averages (September—November) of 10 vertical column amounts above the
Southern Hemisphere (from 90° S to 50° S) for six individual years from 2004 to 2009.
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Fig. 4. Monthly maps of 10 vertical column amounts on the Southern Hemisphere (up to 50° S)
averaged over six subsequent years each (2004-2009), the individual averaging periods are
given in the headers.
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Fig. 5. Monthly maps of BrO vertical column amounts on the Southern Hemisphere (up to

50° S) averaged over six subsequent years each (2004—2009), the individual averaging periods
are given in the headers.
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Fig. 6. Contour plot showing the variation of IO average columns with longitude (horizontal
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The map below shows the Antarctic coast line.
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SWFMOCHLO.005 Chlorophyll a concentration climatology [mg/m3] - Jan to Dec

Fig. 7. Map of the Chlorophyll-a concentration climatology for the Antarctic region. This visu-
alization has been obtained from the Giovanni online data system (Acker and Leptoukh, 2007)
developed and maintained by the NASA GES DISC. Observations are based on data from the

SeaWiFS and MODIS instruments.
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Fig. 8. Maps of the sea ice concentration above Antarctica in October (a) and November (b),
averaged over the years 2004 to 2009 each, i.e. the same time period as in Figs. 4 and 5. Data
of daily sea ice concentrations are available from the Integrated Climate Data Center (ICDC,
http://icdc.zmaw.de, KlimaCampus, University of Hamburg). The boxes mark an example area
with internal ice concentration loss between October to November, which is used for analysis

in Fig. 9.

AMSR-E Ice Concentration: Oct 2004-2009

AMSR-E Ice Concentration: Nov 2004-2009
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Fig. 9. Comparison of the change in ice cover with the change in 10 abundance in the section
from 0°—10° E versus latitude (marked area in Fig. 8). Blue dotted and dark blue dashed lines:
the average ice concentration for October and November, respectively. The difference between
the two curves is shown in solid light blue (November—October). The solid red curve displays
the difference of the IO column amount between November and October.
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